Zhou M, Abid M, Yin H, Wu H, Teklue T, Qiu HJ, Sun Y. Establishment of an Efficient and Flexible Genetic Manipulation Platform Based on a Fosmid Library for Rapid Generation of Recombinant Pseudorabies Virus. Front Microbiol. 2018 Sep 5;9:2132-最新论文-保定市金诺兽药研究所

科研进展

当前位置: 首页» 科研进展» 最新论文

最新论文

Zhou M, Abid M, Yin H, Wu H, Teklue T, Qiu HJ, Sun Y. Establishment of an Efficient and Flexible Genetic Manipulation Platform Based on a Fosmid Library for Rapid Generation of Recombinant Pseudorabies Virus. Front Microbiol. 2018 Sep 5;9:2132

Establishment of an Efficient and Flexible Genetic Manipulation Platform Based on a Fosmid Library for Rapid Generation of Recombinant Pseudorabies Virus.
Zhou M , Abid M , Yin H , Wu H , Teklue T , Qiu HJ , Sun Y .
Front Microbiol. 2018 Sep 5;9:2132. doi: 10.3389/fmicb.2018.02132. eCollection 2018.

Abstract
Conventional genetic engineering of pseudorabies virus (PRV) is essentially based on homologous recombination or bacterial artificial chromosome. However, these techniques require multiple plaque purification, which is labor-intensive and time-consuming. The aim of the present study was to develop an efficient, direct, and flexible genetic manipulation platform for PRV. To this end, the PRV genomic DNA was extracted from purified PRV virions and sheared into approximately 30-45-kb DNA fragments. After end-blunting and phosphorylation, the DNA fragments were separated by pulsed-field gel electrophoresis, the recovered DNA fragments were inserted into the cloning-ready fosmids. The fosmids were then transformed into Escherichia coli and selected clones were end-sequenced for full-length genome assembly. Overlapping fosmid combinations that cover the complete genome of PRV were directly transfected into Vero cells and PRV was rescued. The morphology and one-step growth curve of the rescued virus were indistinguishable from those of the parent virus. Based on this system, a recombinant PRV expressing enhanced green fluorescent protein fused with the VP26 gene was generated within 2 weeks, and this recombinant virus can be used to observe the capsid transport in axons. The new genetic manipulation platform developed in the present study is an efficient, flexible, and stable method for the study of the PRV life cycle and development of novel vaccines.

扫一扫 关注我
网站首页 联系我们
TOP